Skip to main content

MIRI Publication Receives APS Key Distinction

August 22, 2022

MIRI publication receives APS Key Distinction.

The manuscript "Metabolomic Signatures of Low and High Adiposity Neonates Differ based on Maternal BMI," senior author MIRI Interim Executive Director Dr. Perrie O'Tierney-Ginn, has been selected for APSselect, a collection from the American Physiological Society (APS) that showcases some of the best recently published articles in physiological research. An abstract of the study's findings is below.

The American Physiological Society

 

Maternal obesity [body mass index (BMI) > 30 kg/m2] is associated with greater neonatal adiposity, cord blood (CB) insulin levels and a proinflammatory phenotype at birth, contributing to risk of future cardiometabolic disease in the offspring. Variation in neonatal adiposity within maternal BMI groups is underappreciated, and it remains unclear whether the metabolic impairments at birth are an outcome of maternal obesity or excess fetal fat accrual. We examined the hypothesis that CB metabolites associated with fetal fat accrual differ between offspring of normal-weight and obese women. Umbilical venous blood was collected at the time of scheduled cesarean delivery from 50 normal-weight women (LE; pregravid BMI = 22.3 ± 1.7 kg/m2) and 50 obese women (OB; BMI = 34.5 ± 3.0 kg/m2). Neonatal adiposity was estimated from flank skinfold thickness. The first (low adiposity, LA) and third (high adiposity, HA) tertiles of neonatal %body fat were used to create four groups: OBLA, OBHA, LELA and LEHA. CB metabolites were measured via untargeted metabolomics. Broadly, the LA offspring of OB women (OBLA) metabolite signature differed from other groups. Lauric acid (C12:0) was 82–118% higher in OBLA vs. all other groups [false discovery rate (FDR) NEW & NOTEWORTHY Using untargeted metabolomics in 100 newborns, we found that cord blood metabolite signatures associated with neonatal adiposity differed between offspring of women with and without obesity.

Announcements
Dr. Tomoko Kaneko-Tarui of MIRI Gets Charlton Award
Dr. Tomoko Kaneko-Tarui of MIRI gets Charlton Award.
Press Releases
Perrie O'Tierney-Ginn, PhD, Named Executive Director of the Mother Infant Research Institute at Tufts Medical Center
Tufts Medicine announced today that Perrie O'Tierney-Ginn, PhD, has been named the permanent Executive Director of the Mother Infant Research Institute (MIRI) at Tufts Medical Center. She had served as the Interim Executive Director of MIRI since September 2021.
Press Releases
STUDY: Metabolomic Analyses May Help Predict Healthy Aging, Longevity and Mortality
A large study of metabolites provides a glimpse into possible mechanisms behind why certain people age better and live longer

Be among the first to know

Enjoy the latest health updates from Tufts Medicine by signing up for our e-newsletter today.

Jump back to top